Powered by Blogger.
RSS
Welcome to our class "Federation of Science Four".. If you face problem on studying chemistry just open this blog! Your problem will be solved.. We hope that everyone can enjoy every contents in this blog..

Kelas X Bab 1 Sejarah Perkembangan Sistem Periodik Unsur

Sejarah Perkembangan Sistem Periodik Unsur
Penyusunan sistem periodik unsur telah mengalami banyak penyempurnaan. Mulai dari Antoine Lavosier, J. Newslands, O. Mendeleev hingga Henry Moseley.


1. Pengelompokan Unsur Menurut Lavoisier
Pada 1789, Antoine Lavoiser mengelompokan 33 unsur kimia. Pengelompokan unsur tersebut berdasarka sifat kimianya. Unsur-unsur kimia di bagi menjadi empat kelompok. Yaitu gas, tanah, logam dan non logam. Pengelompokan ini masih terlalu umum karena ternyata dalam kelompok unsur logam masih terdapat berbagai unsur yang memiliki sifat berbeda.
Unsur gas yang di kelompokan oleh Lavoisier adalah cahaya, kalor, oksigen, azote ( nitrogen ), dan hidrogen. Unsur-unsur yang etrgolong logam adalah sulfur, fosfor, karbon, asam klorida, asam flourida, dan asam borak. Adapun unsur-unsur logam adalah antimon,perak, arsenik, bismuth. Kobalt, tembaga, timah, nesi, mangan, raksa, molibdenum, nikel, emas, platina, tobel, tungsten, dan seng. Adapun yang tergolong unsur tanah adalah kapur, magnesium oksida, barium oksida, aluminium oksida, dan silikon oksida.
Kelemahan dari teori Lavoisior : Penglompokan masih terlalu umum
kelebihan dari teori Lavoisior : Sudah mengelompokan 33 unsur yang ada berdasarka sifat kimia sehingga bisa di jadikan referensi bagi ilmuan-ilmuan setelahnya.

2. Pengelompokan unsur menurut J.W. Dobereiner
Pada tahun 1829, J.W. Dobereiner seorang profesor kimia dari Jerman mengelompokan unsur-unsur berdasarkan kemiripan sifat-sifatnya.
Ia mengemukakan bahwa massa atom relatif strontium sangat dekat dengan masa rata-rata dari dua unsur lain yang mirip dengan strantium, yaitu kalsiium dan barium. Dobereiner juga mengemukakan beberapa kelompok unsur lain seperti itu. Unsur pembentuk garam dan massa atomnya, yaitu c1 = 35,5 Br = 80, dsn I = 127. unsur pembentuk alkali dan massa atomnya. Yaitu Li = 7, Na = 23dan K = 39.
Dari pengelompokan unsur-unsur tersebut, terdapat suatu keteraturan. Setiap tiga unsur yang sifatnya mirip massa atom ( A r ) unsur yang kedua (tengah) merupakan massa atom rata-rata dari massa atom unsur pertama dan ketiga.
Oleh karena itu, Dobereiner mengambil kesimpulan bahwa unsur-unsur dapat di kelompokan ke dalam kelompok-kelompok tiga unsur yang di sebut triade.

Kelemahan dari teori ini adalah pengelompokan unsur ini kurang efisian dengan adanya beberapa unsur lain dan tidak termasuk dalam kelompok triad padahal sifatnya sama dengan unsur dalam kelompok triefd tersebut.
Kelebihan dari teori ini adalah adanya keteraturan setiap unsure yang sifatnya mirip massa Atom (Ar) unsure yang kedua (tengah) merupakan massa atom rata-rata di massa atom unsure pertama dan ketiga.

3. Hukum Oktaf Newlands
J. Newlands merupakan orang pertama yang mengelompokan unsur-unsur berdasarkan kenaikan massa atom relatif. Newlands mengumumkan penemuanya yang di sebut hukum oktaf.
Ia menyatakan bahwa sifat-sifat unsur berubah secara teratur.. Unsur pertama mirip dengan unsur kedelapan, unsur kedua mirip dengan unsur kesembilan, dan seterusnya. Daftar unsur yang disusun oleh Newlands berdasarkan hukum oktaf diberikan pada tabel 1.1
Di sebut hokum Oktaf karena beliau mendapati bahwa sifat-sifat yang sama berulang pada setiap unsure ke delapan dalam susunan selanjutnya dan pola ini menyurapi oktaf music.

Hukum oktaf newlands ternyata hanya berlaku untuk unsur-unsur ringan. Jika diteruskan, teryata kemiripan sifat terlalu dipaksakan. Misalnya, Ti mempunya sifat yang cukup berbeda dengan Al maupun B.
Kelemahan dari teori ini adalah dalam kenyataanya mesih di ketemukan beberapa oktaf yang isinya lebih dari delapan unsur. Dan penggolonganya ini tidak cocok untuk unsur yang massa atomnya sangat besar.

4. Sistem periodik Mendeleev
Pada tahun 1869 seorang sarjana asal rusia bernama Dmitri Ivanovich mendeleev, berdasarkan pengamata terhadap 63 unsur yang sudah dikenal ketika itu, menyimpulkan bahwa sifat-sifat unsur adalah fungsi periodik dari massa atom relatifnya. Artinya, jika unsur-unsur disusunmenurut kenaikan massa atom relatifnya, maka sifat tertentu akan berulang secara periodik. Mendeleev menempatkan unsur-unsur yang mempunyai kemiripan sifat dalam satu lajur vertikal yang disebut golongan. Lajur-lajur horizontal, yaitu lajur unsur-unsur berdasarkan kenaikan massa atom relatifnya, disebut priode daftar periodik Mendeleev yang dipublikasikan tahun 1872.
Sebagaimana dapat dilihat pada gambar di atas, Mendeleev mengkosongkan beberapa tempat. Hal itu dilakukan untuk menetapkan kemiripan sifat dalam golongan. Sebagai contoh, Mendelev menempatkan Ti (Ar = 48 ) pada golongan IV dan membiarkan golongan III kosong karena Ti lebih mirip dengan C dan Si, dari pada dengan B dan Al. Mendeleev meramalkan dari sifat unsur yang belum di kenal itu. Perkiraan tersebut didasarkan pada sifat unsurlain yang sudah dikenal, yang letaknya berdampingan baik secara mendatar maupun secara tegak. Ketika unsur yang diramalkan itu ditemukan, teryata sifatnya sangat sesuai dengan ramalan mendeleev. Salah satu contoh adalah germanium ( Ge ) yang ditemukan pada tahun 1886, yang oleh Mendeleev dinamai ekasilikon.
Kelemahan dari teori ini adalah masih terdapat unsur-unsur yang massanya lebih besar letaknya di depan unsur yang massanya lebih kecil. Co : Telurium (te) = 128 di kiriIodin (I)= 127. hal ini dikarenakan unsur yang mempunyai kemirpan sifat diletakkan dalam satu golongan. Kelemahan dari teori ini adalah pemebetulan massa atom. Sebelumnya massa atom. Sebelumnya massa atom In = 76 menjadi 113. selain itu Be, dari 13,5 menjadi 9. U dari 120 menjadi 240 . selain itu kelebihannya adalah peramalan unsur baru yakni meramalkan unsur beseerta sifat-sifatnya.

5. Sistem Periodik Modern dari Henry G. Moseley
Pada awal abad 20, pengetahuan kita terhadap atom mengalami perkembangan yang sangat mendasar. Para ahli menemukan bahwa atom bukanlah suatu partikel yang tak terbagi melainkan terdiri dari partikel yang lebih kecil yang di sebut partikel dasar atau partikel subatom. Kini atom di yakini terdiri atas tiga jenis partikeldasar yaitu proton, elektron, dan neuron. Jumlah proton merupakan sifat khas dari unsur, artinya setiap unsur mempunyai jumlah proton tertentu yang berbeda dari unsur lainya. Jumlah proton dalam satu atom ini disebut nomor atom. pada 1913, seorang kimiawan inggris bernama Henry Moseley melakukan eksperimen pengukuran panjang gelombang unsur menggunakan sinar-X.
Berdasarkan hasil eksperimenya tersebut, diperolehkesimpulan bahwasifat dasar atom bukan didasari oleh massa atom relative, melainkan berdasarkan kenaikan jumlah proton. Ha tersebut diakibatkan adanya unsur-unsur yang memiliki massa atom berbeda, tetapi memiliki jumlah proton sama atau disebut isotop.
Kenaikan jumlah proton ini mencerminkan kenaikan nonor atom unsur tersebut. Pengelompokan unsur-unsur sisitem periodik modern merupakan penyempurnaan hukum periodik Mendeleev, yang di sebut juga sistem periodik bentuk panjang.
Sistem periodik modern disusun berdasarkan kebaikan nomor atom dan kemiripan sifat. Lajur-lajur horizontal, yang disebut periode disusun berdasarkan kenaikan nomor atom ; sedangkan lajur-lajur vertikal, yang disebut golongan, disusun berdasarkan kemiripan sifat. Sistem periodik modern terdriri atas 7 periode dan 8 golongan. Setiap golongan dibagi lagi menjadi 8 golongan A( IA-VIIIA ) dan 8 golongan B (IB – VIIIB).
Unsur-unsur golongan A disebut golongan utama, sedangkan golongan B disebut golongan transisi. Golongan-golongan juga dapat ditandai dengn bilangan 1 sampai dengan 18 secara berurutan dari kiri ke kanan. Dengan cara ini maka unsur transisi terletak pada golongan 3 sampai golongan 12. Pada periode 6 dan 7 terdapat masing-masing 14 unsur yang disebut unsur-unsur transisi dalam, yaitu unsur-unsur antanida dan aktinida. Unsur-unsur transisi dalam semua termasuk golongan IIIB. Unsur-unsur lantanida pada periode 6 golongan IIIB, dan unsur-unsur aktinida pada periode 7 golongan IIIB. Penempatan unsur-unsur tersebut di bagian bawah tabel periodik adalah untuk alasan teknis, sehingga daftr tidak terlalu panjang.



baca lagi»»
  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Kelas XI Bab 6 Stokiometri Larutan

STOKIOMETRI LARUTAN

A.PERSAMAAN ION

Suatu cara pemaparan reaksi kimia yang melibatkan larutan elektrolit disebut persamaan ion. Dalam persamaan ion, zat elektrolit kuat dituliskan sebagai ion-ionnya yang terpisah, sedangkan elektrolit lemah, gas, dan zat padat tetap ditulis sebagai molekul atau senyawa netral tak terionkan.

contoh soal :
Tulislah reaksi rumus dan reaksi ion untuk reaksi ;
karbon dioksida dengan larutan natrium hidroksida membentuk larutan natrium karbonat dan air.
jawab :
CO2(g) + NaOH(aq) Na2CO3(aq) + H2O(l) (belum setara)
CO2(g) + 2NaOH(aq) Na2CO3(aq) + H2O(l) (setara)
Keterangan : NaOH dan Na2CO3 tergolong elektrolit kuat, maka ;
Persamaan ion lengkap :
CO2(g) + 2Na+(aq) + 2OH-(aq) 2Na+(aq) +CO32-(aq) + H2O(l)
Persamaan ion bersih :
CO2(g) + 2OH-(aq) CO32-(aq) + H2O(l)

B. SIFAT BERBAGAI MACAM ZAT
Ada tidaknya reaksi dapat diketahui melalui pengamatan. Namun demikian, jika mengetahui sifat-sifat zat yang dicampurkan, kita dapat menentukan terjadi-tidaknya reaksi. Untuk dapat meramalkan reaksi dalam larutan elektrolit, perlu pemahaman tentang berbagai hal berikut :
- Jenis zat yang direaksikan
- Kelarutan elektrolit
- Kekuatan elektrolit
- Senyawa-senyawa hipotesis
- Deret keaktifan logam

1. Jenis Zat Pereaksi
a. Asam
Asam adalah zat-zat yang dalam air menghasilkan ion H+ dan ion sisa asam.
contoh :
HCl dan H2SO4 yang mengion sebagai berikut :
HCl(aq) H+(aq) + Cl-(aq)
H2SO4(aq) 2H+(aq) + SO42-(aq)
b. Basa
Basa adalah zat-zat yang dalam air menghasilkan ion OH- dan suatu kation logam.
contoh :
NaOH dan Ca(OH)2
NaOH(aq) Na+(aq) + OH-(aq)
Ca(OH)2(aq) Ca2+(aq) + 2OH-(aq)
c. Garam
Garam adalah suatu senyawa ion yang terdiri dari kation basa dan anion asam.

contoh :
NaCl, Ca(NO3)2, dan Al2(SO4)3
NaCl(aq) Na+(aq) + Cl-(aq)
Ca(NO3)2(aq) Ca2+(aq) + 2NO3-(aq)
Al2(SO4)3(aq) 2Al3+(aq) + 3SO42-(aq)
d. Oksida Basa dan Oksida Asam
Senyawa yang tersusun dari suatu unsur dengan oksigen disebut oksida. Bergantung pada jenis unsurnya (logam atau nonlogam), oksida dapat dibedakan atas oksida logam dan oksida nonlogam. Oksida logam yang bersifat basa disebut oksida basa. Oksida nonlogam yang bersifat asam disebut oksida asam.
Oksida Basa
Oksida basa tergolong senyawa ion, terdiri dari kation logam dan anion oksida (O2-).
contoh :
Na2O dan CaO
Na2O mengandung ion Na+ dan O2-, sedangkan CaO terdiri dari ion Ca2+
dan O2-
Oksida Asam
Oksida asam merupakan senyawa molekul dan dapat bereaksi dengan air membentuk asam.
contoh :
Oksida Asam Rumus Asam
SO2 H2SO3
SO3 H2SO4
N2O3 HNO2
N2O5 HNO3

e. Logam
Logam bertindak sebagai spesi yang melepas elektron. Pelepasan elektron akan menghasilkan ion logam. Jumlah elektron yang dilepaskan bergantung pada bilangan oksidasi logam tersebut.
contoh :
Natrium melepas 1 elektron membentuk ion Na+
Kalsium melepas 2 elektron membentuk ion Ca2+
2. Kelarutan Elektrolit
Semua asam mudah larut dalam air. Adapun basa dan garam ada yang mudah larut dan ada pula yang sukar larut.
3. Kekuatan Elektrolit
Asam basa yang tergolong elektrolit kuat adalah :
Asam kuat : HCl, H2SO4, HNO3, HBr, HI, dan HClO4
Basa kuat : NaOH, KOH, Ba(OH)2, Sr(OH)2, Ca(OH)2, Mg(OH)2
(semua basa dari golongan IA dan IIA, kecuali Be(OH)2).
4. Senyawa-senyawa Hipotesis
Beberapa senyawa yang tidak stabil dan peruraiannya adalah :
a. Asam
Asam karbonat (H2CO3) H2O(l) + CO2(g)
Asam nitrit (HNO2) H2O(l) + NO(g) + NO2(g)
b. Basa
Amonium hidroksida (NH4OH) H2O(l) + NH3(g)
Perak hidroksida (2AgOH) Ag2O(s) + H2O(l)

c. Garam
Besi (III) iodida (2FeI3) 2FeI2(aq) + I2(s)
Tembaga iodida (2CuI2) 2CuI2(s) + I2(s)
5. Deret Keaktifan Logam
Logam mempunyai kereaktifan yang berbeda-beda. Urutan kereaktifan dari beberapa logam, dimulai dari yang paling reaktif adalah sebagai berikut :
Li–K-Ba-Ca-Na-Mg-Al-Zn-Cr-Fe-Ni-Sn-Pb-(H)-Cu-Hg-Ag-Pt-Au
Sebelah kiri (H) lebih aktif dibandingkan sebelah kanan (H)
C. BERBAGAI JENIS REAKSI DALAM LARUTAN ELEKTROLIT
1. Reaksi-Reaksi Asam-Basa
a. Reaksi Asam dengan Basa
ASAM + BASA GARAM + AIR
b. Reaksi Oksida Basa dengan Asam
OKSIDA BASA + ASAM GARAM + AIR
c. Reaksi Oksida Asam dengan Basa
OKSIDA ASAM + BASA GARAM + AIR
d. Reaksi Amonia dengan Asam
NH3 + ASAM GARAM AMONIUM
2. Reaksi Pergantian (Dekomposisi) Rangkap
Reaksi pergantian (dekomposisi) rangkap dapat dirumuskan sebagai berikut :
AB + CD AD + CB
Senyawa AB dan CD dapat berupa asam, basa atau garam. Reaksi dapat berlangsung apabila AD atau CB atau keduanya memenuhi paling tidak satu dari kriteria berikut :
sukar larut dalam air
merupakan senyawa yang tidak stabil
merupakan elektrolit yang lebih lemah dari AB atau CD
3. Reaksi Redoks
Reaksi redoks adalah reaksi yang disertai perubahan bilangan oksidasi.
a. Reaksi Logam dengan Asam Kuat Encer (ex : HCl dan H2SO4)
LOGAM + ASAM KUAT ENCER GARAM + GAS H2
b. Reaksi Logam dengan Garam
LOGAM L + GARAM MA GARAM LA + LOGAM M
Reaksi hanya akan berlangsung jika logam L terletak di sebelah kiri logam M dalam deret keaktifan logam (logam L lebih aktif daripada logam M).
D. STOIKIOMETRI REAKSI DALAM LARUTAN
1. Hitungan Stoikiometri Sederhana
mol = massa (gram) M = mol
Mr v (liter)
2. Hitungan Stoikiometri dengan Pereaksi Pembatas
Jika zat-zat yang direaksikan tidak ekivalen, maka salah satu dari zat itu akan habis lebih dahulu. Zat yang habis lebih dahulu itu kita sebut pereaksi pembatas.
contoh soal :
Hitunglah massa endapan yang terbentuk dari reaksi 50ml timbel(II) nitrat 0.1M dengan 50ml KI 0.1M (Pb = 207 ; I = 127)
jawab :
Pb(NO3)2(aq) + 2KI(aq) PbI2(s) + 2KNO3(aq)
menentukan pereaksi pembatas
jumlah mol Pb(NO3)2 = 50ml x 0.1M
= 5 mmol
jumlah mol KI = 50ml x 0.1M
= 5 mmol
mol Pb(NO3)2 = 5/1 = 5
koefisien Pb(NO3)2
mol KI = 5/2 = 2.5
koefisien KI
pereaksi pembatas adalah KI karena hasil pembagi KI lebih kecil
Jumlah mol PbI2 (endapan) yang terbentuk dibandingkan dengan jumlah mol pereaksi pembatas.
Mol PbI2 = ½ x mol KI
= ½ x 5 mmol
= 2.5 mmol
massa PbI2 = 2.5 mmol x 461 gr/mol
= 1152.5 mg
= 1.1525 gram
3. Hitungan Stoikiometri yang Melibatkan Campuran
Jika suatu campuran direaksikan, maka masing-masing komponen mempunyai persamaan reaksi sendiri. Pada umumnya hitungan yang melibatkan campuran diselesaikan dengan pemisalan.
contoh soal :
Sebanyak 5.1 gram campuran CaO – Ca(OH)2 memerlukan 150ml HCl 1M. Tentukanlah susunan campuran tersebut.
jawab :
CaO(s) + 2HCl(aq) CaCl2(aq) + H2O(l) …………………………………………... (1)
Ca(OH)2(s) + 2HCl(aq) CaCl2(aq) + 2H2O(l) …………………………………… (2)
misalkan massa CaO = x gram
dan massa Ca(OH)2 = (5.1 – x), maka
mol CaO = x gr
56 gr/mol
mol Ca(OH)2 = (5.1 – x)
74 gr/mol
mol HCl = 0.15 liter x 1M
= 0.15 mol
mol HCl untuk reaksi (1) = 2 x mol CaO
= 2 x x/56 mol
= x/28 mol
mol HCl untuk reaksi (2) = 2 x mol Ca(OH)2
= 2 x (5.1 – x) mol
74
= (5.1 – x) mol
37
Persamaan : x + (5.1 – x) = 0.15
28 37
37x + 142.8 -28x = 155.4
9x = 12.6
x = 1.4
Jadi, susunan campuran adalah :
CaO = x gram = 1.4 gram
Ca(OH)2 = (5.1 – x) gram = 3.7 gram
E. TITRASI ASAM BASA
Reaksi penetralan asam-basa dapat digunakan untuk menentukan kadar (konsentrasi) berbagai jenis larutan, khususnya yang terkait dengan reaksi asam-basa. Proses penetapan kadar larutan dengan cara ini disebut titrasi asam-basa.
Sejumlah tertentu larutan asam dengan volume trtentu dititrasi dengan larutan basa yang telah diketahui konsentrasinya menggunakan indikator sebagai penunjuk titik akhir titrasi. Titik ekivalen dapat diketahui dengan bantuan indikator (tepat habis bereaksi). Titrasi dihentikan tepat pada saat indikator menunjukkan perubahan warna, saat indikator menunjukkan perubahan warna disebut titik akhir titrasi.

baca lagi»»
  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Kelas X Bab 4 hukum dasar dan perhitungan kimia

Hukum dasar dan perhitungan kimia (STOIKIOMETRI)
1. Hukum Kekekalan Massa (Hukum Lavoisier)
“massa zat sebelum reaksi sama dengan massa zat setelah reaksi”
Contoh :
S(s) + O2(g) → SO2(g)
1 mol S bereaksi dengan 1 mol O2 membentuk 1 mol SO2. 32 gram S bereaksi dengan 32 gram O2 membentuk 64 gram SO2. Massa total reaktan sama dengan massa produk yang dihasilkan.

H2(g) + ½ O2(g) → H2O(l)
1 mol H2 bereaksi dengan ½ mol O2 membentuk 1 mol H2O. 2 gram H2 bereaksi dengan 16 gram O2 membentuk 18 gram H2O. Massa total reaktan sama dengan massa produk yang terbentuk.
2. Hukum Perbandingan Tetap (Hukum Proust)
“perbandingan massa unsur-unsur pembentuk senyawa selalu tetap, sekali pun dibuat dengan cara yang berbeda”
Contoh :
S(s) + O2(g) → SO2(g)
Perbandingan massa S terhadap massa O2 untuk membentuk SO2 adalah 32 gram S berbanding 32 gram O2 atau 1 : 1. Hal ini berarti, setiap satu gram S tepat bereaksi dengan satu gram O2 membentuk 2 gram SO2. Jika disediakan 50 gram S, dibutuhkan 50 gram O2 untuk membentuk 100 gram SO2.
H2(g) + ½ O2(g) → H2O(l)
Perbandingan massa H2 terhadap massa O2 untuk membentuk H2O adalah 2 gram H2 berbanding 16 gram gram O2 atau 1 : 8. Hal ini berarti, setiap satu gram H2 tepat bereaksi dengan 8 gram O2 membentuk 9 gram H2O. Jika disediakan 24 gram O2, dibutuhkan 3 gram H2 untuk membentuk 27 gram H2O.
3. Hukum Perbandingan Volume (Hukum Gay Lussac)
Hanya berlaku pada reaksi kimia yang melibatkan fasa gas
“pada suhu dan tekanan yang sama, perbandingan volume gas pereaksi dengan volume gas hasil reaksi merupakan bilangan bulat dan sederhana (sama dengan perbandingan koefisien reaksinya)”
Menurut Gay Lussac 2 volume gas Hidrogen bereaksi dengan 1 volume gas
Oksigen membentuk 2 volume uap air. Pada reaksi pembentukan uap air, agar
reaksi sempurna, untuk setiap 2 volume gas Hidrogen diperlukan 1 volume gas
Oksigen, menghasilkan 2 volume uap air.
“ Semua gas yang direaksikan dengan hasil reaksi, diukur pada suhu dan rekanan yang sama atau (T.P) sama.”
Contoh :
N2(g) + 3 H2(g) → 2 NH3(g)
Perbandingan volume gas sama dengan perbandingan koefisien reaksinya. Hal ini berarti, setiap 1 mL gas N2 tepat bereaksi dengan 3 mL gas H2 membentuk 2 mL gas NH3. Dengan demikian, untuk memperoleh 50 L gas NH3, dibutuhkan 25 L gas N2 dan 75 L gas H2.
CO(g) + H2O(g) → CO2(g) + H2(g)
Perbandingan volume gas sama dengan perbandingan koefisien reaksinya. Hal ini berarti, setiap 1 mL gas CO tepat bereaksi dengan 1 mL gas H2O membentuk 1 mL gas CO2 dan 1 mL gas H2. Dengan demikian, sebanyak 4 L gas CO membutuhkan 4 L gas H2O untuk membentuk 4 L gas CO2 dan 4 L gas H2.
4. Hukum Avogadro
Hanya berlaku pada reaksi kimia yang melibatkan fasa gas
“pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama”
Hukum Avogadro berkaitan erat dengan Hukum Gay Lussac
Contoh :
N2(g) + 3 H2(g) → 2 NH3(g)
Perbandingan mol sama dengan perbandingan koefisien reaksinya. Hal ini berarti, setiap 1 mol gas N2 tepat bereaksi dengan 3 mol gas H2 membentuk 2 mol gas NH3. Perbandingan volume gas sama dengan perbandingan koefisien reaksinya. Hal ini berarti, setiap 1 L gas N2 tepat bereaksi dengan 3 L gas H2 membentuk 2 L gas NH3. Dengan demikian, jika pada suhu dan tekanan tertentu, 1 mol gas setara dengan 1 L gas, maka 2 mol gas setara dengan 2 L gas. Dengan kata lain, perbandingan mol gas sama dengan perbandingan volume gas.

Berikut ini diberikan beberapa contoh soal serta penyelesaian perhitungan kimia yang menggunakan hukum-hukum dasar kimia :
1. Serbuk kalsium sejumlah 20 gram (Ar Ca = 40) direaksikan dengan 20 gram belerang (Ar S = 32) sesuai dengan persamaan reaksi Ca + S → CaS. Zat apakah yang tersisa setelah reaksi selesai?Berapa massa zat yang tersisa setelah reaksi selesai?
Penyelesaian :
Perbandingan mol Ca terhadap S adalah 1 : 1. Hal ini berarti, setiap 40 gram Ca tepat bereaksi dengan 32 gram S membentuk 72 gram CaS. Perbandingan massa Ca terhadap S adalah 40 : 32 = 5 : 4.
Jika 20 gram S tepat habis bereaksi, dibutuhkan (5/4) x 20 = 25 gram Ca, untuk membentuk 45 gram CaS. Sayangnya, jumlah Ca yang disediakan tidak mencukupi.
Oleh karena itu, 20 gram Ca akan tepat habis bereaksi. Massa S yang diperlukan sebesar (4/5) x 20 gram = 16 gram. Dengan demikian, zat yang tersisa adalah belerang (S). Massa belerang yang tersisa adalah 20-16=4 gram.
2. Gas A2 sebanyak 10 mL tepat habis bereaksi dengan 15 mL gas B2 membentuk 10 mL gas AxBy pada suhu dan tekanan yang sama. Berapakah nilai x dan y?
Penyelesaian :
Perbandingan volume gas A2 terhadap gas B2 dan gas AxBy adalah 10 mL : 15 mL : 10 mL = 2 : 3 : 2. Perbandingan volume gas sama dengan perbandingan koefisien reaksinya. Dengan demikian, persamaan reaksi menjadi :
2 A2(g) + 3 B2(g) → 2 AxBy
Nilai x = 2 dan nilai y = 3.
3. Gas amonia dapat dibuat dengan mereaksikan 100 mL gas nitrogen dan 150 mL gas hidrogen dengan reaksi N2(g) + 3 H2(g) → 2 NH3(g). Hitunglah volume gas amonia yang dihasilkan pada akhir reaksi!
Penyelesaian :
Perbandingan volume gas N2 terhadap gas H2 dan NH3 sama dengan perbandingan koefisien reaksinya, yaitu 1 : 3 : 2.
Jika 100 ml gas N2 tepat habis bereaksi, dibutuhkan 300 mL gas H2. Sayangnya, jumlah gas H2 yang disediakan tidak mencukupi.
Dengan demikian, 150 mL H2 lah yang tepat habis bereaksi. Volume gas N2 yang dibutuhkan sebesar (1/3) x 150 mL = 50 mL. Setelah reaksi selesai, masih tersisa 50 mL gas N2. Volume gas NH3 yang dihasilkan adalah sebesar (2/3) x 150 mL = 100 mL.
4. Pada suhu dan tekanan tertentu, sebanyak 0,5 L gas hidrogen (Ar H = 1) memiliki massa sebesar 0,05 gram. Berapakah volume gas oksigen yang dapat dihasilkan jika sebanyak 12,25 gram padatan KClO3 dipanaskan? (Mr KClO3 = 122,5)
Penyelesaian :
mol H2 = gram / Mr = 0,05 / 2 = 0,025 mol
Persamaan reaksi pemanasan KClO3 adalah sebagai berikut :
KClO3(s) → KCl(s) + 3/2 O2(g)
mol KClO3 = gram / Mr = 12,25 / 122,5 = 0,1 mol
Dengan demikian, mol O2 = (3/2) x 0,1 mol = 0,15 mol
Pada suhu dan tekanan yang sama, Hukum Avogadro berlaku pada sistem gas. Perbandingan mol gas sama dengan perbandingan volume gas. Dengan demikian :
mol H2 : mol O2 = volume H2 : volume O¬2
0,025 : 0,15 = 0,5 : volume O2
Volume O2 = ( 0,15 x 0,5) / 0,025 = 3 L
5. Suatu campuran gas terdiri atas 2 mol gas N2O3 dan 4 mol gas NO. Jika campuran gas ini terurai sempurna menjadi gas nitrogen dan gas oksigen, berapakah perbandingan volume gas nitrogen terhadap gas hidrogen dalam campuran tersebut?
Penyelesaian :
Persamaan reaksi penguraian masing-masing gas adalah sebagai berikut :
N2O3(g) → N2(g) + 3/2 O2(g)
NO(g) → ½ N2(g) + ½ O2(g)
Sebanyak 2 mol gas N2O3 akan terurai dan menghasilkan 2 mol gas N2 dan 3 mol gas O2. Sementara itu, sebanyak 4 mol gas NO akan terurai dan menghasilkan 2 mol gas N2 dan 2 mol gas O2.
Dengan demikian, mol total gas N2 yang terbentuk adalah 2 + 2 = 4 mol N2. Mol total gas O2 yang terbentuk adalah 3 + 2 = 5 mol O2. Perbandingan mol gas sama dengan perbandingan volume gas. Jadi, perbandingan volume gas nitrogen terhadap gas hidrogen dalam campuran tersebut adalah 4 : 5.
Perhitungan Kimia
1.Penentuan Volume Gas Pereaksi dan Hasil Reaksi
Contohnya: Pada reaksi pembentukkan uap air.
2 H2 (g) + O2 (g) 2 H2O (g)
Jika volume gas H2 yang diukur pada suhu 25o C dan tekanan 1 atm adalah 10
liter, maka volume gas O2 dan H2O pada tekanan dan suhu yang sama dapat
ditentukan dengan cara sebagai berikut :
Volume H2 : Volume O2 = Koefisien H2 : Koefisien O2
Volume O2 = x volume H2
Volume O2 = ½ x 10 L = 5 Liter
Coba Anda tentukan volume H2O
Jawab :
Volume H2O = 2/2 x 10 L = 10 Liter

2. Massa Atom Relatif dan Massa Molekul Relatif
“ Berdasarkan perhitungan para ahli, satu atom Hidrogen memiliki massa
1,67 x 10 -27 Kg “
Untuk membandingkan massa atom yang berbeda-beda, para ahli menggunakan
skala massa atom relatif dengan lambang “ Ar “
Massa molekul unsur atau senyawa dinyatakan oleh massa molekul (Mr). Massa
molekul relatif adalah perbandingan massa molekul unsur atau senyawa terhadap
1/12 x massa atom C-12.
Massa molekul dapat dihitung dengan menjumlahkan Ar dari atomatom
pembentuk molekul tersebut.
Mr = ΣAr
Contoh Soal :
Diketahui massa atom relatif (Ar) beberapa unsur sebagai berikut :
Ca = 40
O = 16
H = 1
Tentukan massa molekul relatif (Mr) senyawa Ca(OH)2
Penyelesaian :
Satu molekul Ca(OH)2 mengandung 1 atom Ca, 2 atom O, dan 2 atom H
Mr Ca(OH)2 = Ar Ca + ( 2 Ar O ) + ( 2 Ar H )
= 40 + ( 2 x 16 ) + ( 2 x 1 )
= 40 + 32 + 2
= 74
3. Konsep Mol dan Tetapan Avogadro
Dalam tulisan ini, kita akan mempelajari konsep mol, konsep persamaan reaksi kimia, menggunakan konsep mol dalam menentukan jumlah produk yang dihasilkan oleh suatu reaksi kimia, menuliskan rumus empiris dan rumus molekul senyawa kimia, serta menggunakan konsep pereaksi pembatas dalam menyelesaikan soal perhitungan kimia.
Dalam kimia, perhitungan jumlah partikel, seperti atom dan molekul, umumnya melibatkan bilangan yang sangat besar. Untuk menghitungnya secara efisien dan cepat, kita perlu mengetahui berapa bobot (massa) setiap atom dan molekul. Bobot (massa) setiap atom dapat dilihat pada tabel periodik. Sementara, untuk menentukan bobot (massa) suatu molekul, dapat dilakukan dengan menambahkan bobot (massa) setiap atom dalam senyawa tersebut. (lihat : Massa Atom Relatif, Massa Molekul Relatif, dan Mol)
Bobot (massa) setiap atom dapat ditemukan dalam tabel periodik, sehingga massa suatu molekul dapat diperoleh dengan cara menambahkan massa setiap atom di dalam senyawa tersebut. Sebagai contoh, amonia, NH3, tersusun atas tiga atom hidrogen dan satu atom nitrogen. Dengan melihat pada tabel periodik, kita dapat melihat bahwa massa satu atom hidrogen sama dengan 1,008 sma dan massa satu atom nitrogen adalah 14,00 sma. Dengan demikian, massa satu molekul amonia dapat diperoleh dengan menjumlahkan massa tiga atom hidrogen dan massa satu atom nitrogen.
Mr NH3 = 3 x Ar H + 1 x Ar N = 3 x 1,008 + 1 x 14,00 = 17,024 sma
Contoh lain, pada tabel periodik, kita dapat melihat bahwa massa satu atom tembaga adalah 63,55 sma dan massa satu atom belerang adalah 32,07 sma. Sementara, massa satu atom oksigen adalah 16,00 sma, sedangkan massa satu atom hidrogen adalah 1,008 sma. Dengan demikian, massa satu molekul CuSO4.5H2O adalah sebagai berikut:
Mr CuSO4.5H2O = 1 x Ar Cu + 1 x Ar S + 4 x Ar O + 5 x Mr H2O
= 1 x Ar Cu + 1 x Ar S + 4 x Ar O + 5 x (2 x Ar H + 1 X Ar O)
= 1 x 63,55 + 1 x 32,07 + 4 x 16,00 + 5 x (2 x 1,008 + 1 x 16,00)
= 249,700 sma
Dalam kehidupan sehari-hari, kita menggunakan istilah tertentu untuk menyatakan jumlah. Sebagai contoh, istilah sepasang menyatakan jumlah sebanyak 2; satu lusin setara dengan 12; dan satu rim sama dengan 500. Masing-masing istilah tersebut adalah satuan untuk pengukuran dan hanya sesuai untuk benda tertentu. Tidak pernah kita membeli satu rim anting-anting atau satu pasang kertas.
Demikian halnya dalam ilmu kimia. Ketika para ilmuwan membicarakan tentang atom dan molekul, dibutuhkan satuan yang sesuai dan dapat digunakan untuk ukuran atom dan molekul yang sangat kecil. Satuan ini disebut mol.
Kata mol mewakili suatu bilangan, yaitu 6,022 x 1023, yang umumnya disebut sebagai bilangan Avogadro. Nama ini diberikan menurut nama Amedeo Avogadro, seorang ilmuwan yang meletakkan dasar untuk prinsip mol. (lihat : Massa Atom Relatif, Massa Molekul Relatif, dan Mol)
Bilangan Avogadro merupakan bilangan tertentu untuk sesuatu dan umumnya, sesuatu itu adalah atom dan molekul. Dengan demikian, mol berhubungan dengan dunia mikroskopis atom dan molekul. Mol juga berhubungan dengan dunia makroskopis, yaitu bobot (massa). Satu mol adalah jumlah partikel yang terdapat dalam tepat 12 gram atom C-12. Jadi, 12 gram atom C-12 tepat mengandung 6,022 x 1023 atom C-12, yang juga merupakan satu mol atom C-12. Untuk unsur lainnya, satu mol adalah bobot atom yang dinyatakan dalam gram. Untuk senyawa, satu mol adalah bobot molekul (senyawa) dalam satuan gram. (lihat : Massa Atom Relatif, Massa Molekul Relatif, dan Mol)
Massa molekul relatif (Mr) air adalah 18,015 sma. Oleh karena satu mol adalah bobot molekul (senyawa) dalam satuan gram, maka dapat dikatakan bahwa satu mol air setara dengan 18,015 gram air. Kita juga dapat mengatakan bahwa di dalam 18,015 gram air terdapat 6,022 x 1023molekul air. Satu mol air tersusun oleh dua mol hidrogen dan satu mol oksigen.
Mol adalah jembatan yang menghubungkan antara dunia mikroskopis dan makroskopis. Hubungan antara bilangan Avogadro, mol, dan bobot (massa) atom/molekul adalah sebagai berikut :
6,022 x 1023 partikel ↔ mol ↔ bobot (massa) atom atau molekul (gram)
Sebagai contoh, banyak molekul air yang terdapat di dalam 5,50 mol air adalah sebanyak 5,50 mol x 6,022 x 1023 molekul/mol = 3,31 x 1024 molekul air. Sementara, jumlah mol air di dalam 25 gram air adalah sebanyak 25 gram /18,015 gram.mol-1 = 1,39 mol air.
Konsep mol dapat digunakan untuk menghitung rumus empiris suatu senyawa. Rumus empiris adalah rumus yang menyatakan perbandingan paling sederhana mol unsur-unsur pembentuk senyawa. Rumus empiris suatu senyawa dapat ditentukan melalui data komposisi persentase tiap unsur yang menyusun senyawa tersebut. Komposisi persentase merupakan persentase berdasarkan bobot (massa) setiap unsur dalam senyawa tersebut.
Penentuan komposisi persentase unsur merupakan salah satu dari analisis pertama yang dilakukan oleh para kimiawan saat mempelajari senyawa baru. Sebagai contoh, suatu senyawa mempunyai persentase massa unsur sebagai berikut : 26,4% Na, 36,8% S, dan 36,8% O. Kita dapat mengasumsikan massa senyawa sebesar 100 gram (basis persentase adalah per 100), sehingga persentase tersebut dapat digunakan sebagai massa unsur. Dengan demikian, mol masing-masing unsur dapat ditentukan.
mol Na = 26,4 gram / 22,99 gram.mol-1 = 1,15 mol Na
mol S = 36,8 gram / 32,07 gram.mol-1 = 1,15 mol S
mol O = 36,8 gram / 16,00 gram.mol-1 = 2,30 mol O
Rumus empiris senyawa tersebut adalah Na1,15S1,15O2,30. Angka subskrip pada rumus kimia harus merupakan bilangan bulat. Dengan demikian, setelah masing-masing angka tersebut dibagi dengan 1,15, akan diperoleh rumus NaSO2. Senyawa tersebut dikatakan memiliki rumus empiris NaSO2. Massa molekul relatif (Mr) untuk rumus empiris tersebut adalah 22,99 + 32,07 + 2(16,00) = 87,06 gram/mol.
Pada percobaan lain, telah diketahui berdasarkan analisis spektromassa, bahwa senyawa tersebut memiliki bobot (massa) molekul sebesar 174,12 gram/mol. Bobot (massa) molekul suatu senyawa menunjukkan jenis dan jumlah masing-masing unsur yang menyusun senyawa tersebut, bukan perbandingan paling sederhana. Dengan demikian, rumus molekul (formula) suatu senyawa merupakan kelipatan dari rumus empiris senyawa bersangkutan. Dengan membagi 174,12 gram dengan 87,06 gram (membagi bobot (massa) molekul sesungguhnya dengan bobot (massa) molekul relatif), diperoleh angka dua. Hal ini berarti, rumus molekul (formula) adalah dua kali rumus empirisnya. Rumus molekul (formula) senyawa tersebut sesungguhnya adalah (NaSO2)2 = Na2S2O4.
Reaksi kimia adalah proses perubahan dari suatu zat menjadi zat baru. Untuk mempelajari perubahan yang terjadi di dalam reaksi kimia, para ahli kimia biasanya menggunakan notasi (simbol) dan dinyatakan dalam persamaan reaksi kimia. Persamaan reaksi kimia menggunakan notasi kimia (simbol kimia) untuk memperlihatkan proses yang terjadi selama reaksi kimia berlangsung. Seorang kimiawan menggunakan sesuatu yang disebut reaktan dan membuat sesuatu yang baru dari reaktan tersebut (disebut produk).
Sebagai contoh, reaksi yang terjadi pada Proses Haber, suatu metode untuk menghasilkan gas amonia (NH3) dari gas nitrogen (N2) dan gas hidrogen (H2), adalah sebagai berikut :
N2(g) + 3 H2(g) → 2 NH3(g)
Reaksi tersebut dapat dibaca sebagai berikut : satu molekul gas nitrogen bereaksi dengan tiga molekul gas hidrogen menghasilkan dua molekul gas amonia.
1 molekul N2(g) + 3 molekul H2(g) → 2 molekul NH3(g)
1 lusin molekul N2(g) + 3 lusin molekul H2(g) → 2 lusin molekul NH3(g)
1000 molekul N2(g) + 3000 molekul H2(g) → 2000 molekul NH3(g)
1 juta molekul N2(g) + 3 juta molekul H2(g) → 2 juta molekul NH3(g)
1 x 6,022 x 1023 molekul N2(g) + 3 x 6,022 x 1023 molekul H2(g) → 2 x 6,022 x 1023 molekul NH3(g)
1 mol molekul N2(g) + 3 mol molekul H2(g) → 2 mol molekul NH3(g)
Ternyata koefisien reaksi pada persamaan reaksi kimia yang telah disetarakan tidak hanya menyatakan jumlah atom dan molekul, tetapi ini juga menyatakan jumlah mol. Dengan mengetahui massa molekul relatif (Mr) dari reaktan dan produk, jumlah reaktan yang dibutuhkan dan jumlah produk yang dihasilkan dapat ditentukan. Sebagai contoh, lihatlah kembali persamaan kimia pada Proses Haber.
N2(g) + 3 H2(g) → 2 NH3(g)
1 mol N2(g) + 3 mol H2(g) → 2 mol NH3(g)
1 mol N2 = 1 mol x 28,00 gram/mol = 28,00 gram
3 mol H2 = 3 mol x 2,016 gram/mol = 6,048 gram
2 mol NH3 = 2 mol x 17,024 gram/mol = 34,048 gram
Dengan mengetahui hubungan massa antara reaktan dan produk, kita dapat mengerjakan soal-soal stoikiometri. Stoikiometri adalah studi kuantitatif mengenai jumlah reaktan dan produk yang terlibat dalam reaksi kimia. Stoikiometri pada persamaan kimia menyatakan hubungan massa.
Pada persamaan reaksi Proses Haber, terlihat bahwa satu mol gas nitrogen dapat bereaksi dengan tiga mol gas hidrogen untuk menghasilkan dua mol gas amonia. Misalkan kita ingin mengetahui jumlah gram gas amonia yang dapat dihasilkan dari reaksi 75 gram gas nitrogen dengan gas hidrogen berlebih. Kuncinya adalah konsep mol. Koefisien pada reaksi yang telah disetarakan tidak hanya menunjukkan jumlah setiap atom atau molekul saja, tetapi juga jumlah mol.
Pertama, kita dapat mengubah 75 gram gas nitrogen menjadi mol gas nitrogen. Kemudian kita dapat menggunakan nisbah (perbandingan) mol gas amonia terhadap mol gas nitrogen dari persamaan reaksi yang telah disetarakan, untuk mendapatkan jumlah mol gas amonia. Akhirnya, kita mendapatkan mol amonia dan mengubahnya menjadi bentuk gram. Persamaannya adalah sebagai berikut :
Massa NH3 = (75 gram N2/28,00 gram N2.mol-1 N2) x (2 mol NH3/1 mol N2) x (17,024 gram NH3/mol NH3)
= 91,2 gram NH3
Nisbah (perbandingan) mol NH3 terhadap mol N2 disebut sebagai nisbah (perbandingan) stoikiometri. Nisbah ini dapat digunakan untuk mengubah mol suatu bahan pada persamaan reaksi menjadi mol bahan lainnya.
Secara umum, berikut ini adalah langkah-langkah dalam menyelesaikan soal stoikimoetri :
1. Tuliskan terlebih dahulu persamaan reaksi kimia yang telah disetarakan
2. Ubahlah satuan reaktan dari gram atau satuan lainnya menjadi satuan mol
3. Gunakan nisbah stoikiometri untuk menentukan jumlah mol produk yang terbentuk
4. Ubahlah mol produk yang dihasilkan menjadi satuan gram atau satuan lainnya
Sebagai contoh, berikut ini adalah reaksi reduksi karat (Fe2O3) menjadi logam besi dengan menggunakan karbon (kokas). Persamaan reaksi kimia setaranya adalah sebagai berikut :
2 Fe2O3(s) + 3 C(s) → 4 Fe(s) + 3 CO2(g)
Pada contoh ini, bobot (massa) molekul relatif dari setiap bahan adalah sebagai berikut :
Fe2O3 : 159,69 gram/mol
C : 12,01 gram/mol
Fe : 55,85 gram/mol
CO2 : 44,01 gram/mol
Misalkan, kita ingin menentukan berapa gram karbon yang diperlukan untuk tepat bereaksi dengan 1 kilogram karat besi. Langkah pertama yang harus dikerjakan adalah mengubah kilogram karat besi menjadi gram karat besi, kemudian mengubahnya menjadi mol karat besi. Langkah berikutnya, kita menggunakan nisbah stoikiometri untuk mengubah dari mol karat besi menjadi mol karbon. Akhirnya, setelah mendapatkan mol karbon, massa karbon dapat ditentukan dengan menggunakan massa atom relatif karbon.
1 kilogram Fe2O3 = 1000 gram Fe2O3
Mol Fe2O3 = 1000 gram/159,69 gram.mol-1 = 6,262 mol Fe2O3
Nisbah stoikiometri C terhadap Fe2O3 adalah 3 : 2
Mol Fe2O3 : Mol C = Koefisien reaksi Fe2O3 : Koefisien reaksi C
6,262 : Mol C = 2 : 3
Mol C = 3/2 x Mol Fe2O3 = 3/2 x 6,262 mol = 9,393 mol C
Massa C = mol C x Ar C = 9,393 mol Cx 12,01 gram C/mol C = 112,8 gram C
Kita juga dapat menghitung jumlah atom karbon yang digunakan untuk bereaksi dengan 1 kilogram karat besi. Pada dasarnya, perhitungan yang digunakan sama, tetapi pada tahap pengubahan mol karbon menjadi gram karbon, diganti dengan pengubahan mol karbon menjadi atom karbon dengan menggunakan bilangan Avogadro.
Jumlah Atom C = mol C x Bilangan Avogadro = 9,393 mol C x 6,022 x 1023 atom C/mol C
= 5,656 x 1024 atom C
Selanjutnya, kita ingin menentukan berapa gram besi yang dihasilkan dari reaksi 1 kilogram karat besi. Langkah pertama yang harus dikerjakan adalah mengubah kilogram karat besi menjadi gram karat besi, kemudian mengubahnya menjadi mol karat besi. Langkah berikutnya, kita menggunakan nisbah stoikiometri untuk mengubah dari mol karat besi menjadi mol besi. Akhirnya, setelah mendapatkan mol besi, massa besi dapat ditentukan dengan menggunakan massa atom relatif besi.
1 kilogram Fe2O3 = 1000 gram Fe2O3
Mol Fe2O3 = 1000 gram/159,69 gram.mol-1 = 6,262 mol Fe2O3
Nisbah stoikiometri Fe terhadap Fe2O3 adalah 4 : 2
Mol Fe2O3 : Mol Fe = Koefisien reaksi Fe2O3 : Koefisien reaksi Fe
6,262 : Mol Fe = 2 : 4
Mol Fe = 4/2 x Mol Fe2O3 = 4/2 x 6,262 mol = 12,524 mol Fe
Massa Fe = mol Fe x Ar Fe = 12,524 mol Fe x 55,85 gram Fe/mol Fe = 699,47 gram Fe
Dengan demikian, kita dapat meramalkan bahwa pada akhir reaksi, 1 kilogram karat besi dapat menghasilkan 699,47 gram logam besi. Namun, bagaimana jika setelah melakukan reaksi ini, kita hanya mendapatkan 525 gram logam besi? Ada beberapa alasan sehingga kita mendapatkan hasil yang jauh lebih kecil dari yang kita harapkan. Misalkan, reaktan yang digunakan tidak murni. Atau mungkin saja teknik reaksi yang digunakan tidak begitu baik. Tidak menutup kemungkinan, reaksi ini merupakan reaksi kesetimbangan (reversibel, lihat : Kesetimbangan Kimia), sehingga kita tidak akan pernah memperoleh hasil 100% dari perubahan reaktan menjadi produk.
Efisiensi suatu reaksi kimia dapat ditentukan melalui perhitungan persentase hasil. Hampir di semua reaksi, kita akan mendapatkan hasil yang lebih sedikit dari yang diharapkan. Hal ini terjadi karena sebagian besar reaksi merupakan reaksi kesetimbangan (lihat : Kesetimbangan Kimia) atau karena adanya beberapa kondisi reaksi yang menyebabkan reaksi tidak berjalan sempurna. Para kimiawan dapat memperoleh efisiensi reaksi dengan menghitung persentase hasil sebagai berikut :
Persentase hasil = (hasil sesungguhnya/hasil teoritis) x 100%
Hasil sesungguhnya adalah berapa banyak produk yang diperoleh setelah reaksi selesai. Hasil teoritis adalah berapa banyak produk yang diperoleh berdasarkan perhitungan stoikiometri. Perbandingan dari kedua hasil ini memberikan penjelasan tentang seberapa efisien reaksi tersebut. Pada contoh sebelumnya, hasil teoritis logam besi adalah 699,47 gram. Sedangkan hasil sesungguhnya adalah 525 gram. Oleh karena itu, persentase hasilnya adalah :
% hasil = (525 gram/699,47 gram) x 100% = 75,05%
Persentase hasil 75% bukan merupakan hasil yang terlalu buruk. Akan tetapi, para kimiawan dan insinyur kimia lebih senang mendapatkan hasil yang lebih besar dari 90%. Salah satu industri yang menggunakan Proses Haber memiliki persentase hasil yang lebih dari 99%.
Pada beberapa reaksi kimia, reaktan yang disediakan tidak selalu sesuai dengan nisbah stoikiometrinya. Hal ini berarti, kita akan kehabisan salah satu reaktan dan masih menyisakan reaktan lainnya. Reaktan yang habis terlebih dahulu dikenal dengan istilah pereaksi pembatas. Pereaksi pembatas menentukan jumlah produk yang akan dihasilkan oleh suatu reaksi kimia. Berikut ini kita akan membahas bagaimana cara menentukan pereaksi pembatas melalui contoh berikut :
4 NH3(g) + 5 O2(g) → 4 NO(g) + 6 H2O(l)
Kita mulai dengan 100 gram gas amonia yang direaksikan dengan 100 gram gas oksigen. Reaktan manakah yang merupakan pereaksi pembatas? Berapakah gram gas nitrogen monoksida (NO) yang dapat dihasilkan?
Untuk menentukan reaktan mana yang merupakan pereaksi pembatas, kita dapat menggunakan nisbah (perbandingan) mol terhadap koefisien reaksinya. Kita menghitung jumlah mol masing-masing dan kemudian dibagi dengan koefisien reaksinya masing-masing berdasarkan persamaan reaksi kimia yang telah disetarakan. Nisbah mol terhadap koefisien yang terkecil merupakan pereaksi pembatas.
Mol NH3 = 100 gram/17,024 gram.mol-1 = 5,874 mol
Mol NH3/koefisien NH3 = 5,874/4 = 1,468
Mol O2 = 100 gram/32,00 gram.mol-1 = 3,125 mol
Mol O2/koefisien O2 = 3,125/5 = 0,625
Gas amonia mempunyai nisbah mol terhadap koefisien sebesar 1,468. Sementara, gas oksigen mempunyai nilai nisbah 0,625. Dengan demikian, gas oksigen merupakan pereaksi pembatas. Perhitungan produk yang akan dihasilkan bergantung pada mol gas oksigen.
Nisbah stoikiometri NO terhadap O2 adalah 4 : 5
Mol O2 : Mol NO = Koefisien reaksi O2 : Koefisien reaksi NO
3,125 : Mol NO = 5 : 4
Mol NO = 4/5 x Mol O2 = 4/5 x 3,125 mol = 2,5 mol NO
Massa NO = mol NO x Ar NO = 2,5 mol NO x 30,00 gram NO/mol NO = 75,00 gram NO
Nilai 75,00 gram NO merupakan hasil teoritis. Jika hasil sesungguhnya adalah 70,00 gram, persentase hasil reaksi tersebut adalah sebesar (70,00 gram/75,00 gram) x 100 % = 93,33%.
Kita juga dapat menghitung berapa banyak gas amonia yang tersisa. Perhitungan mol gas amonia yang digunakan dalam reaksi bergantung pada mol gas oksigen sebagai pereaksi pembatas.
Nisbah stoikiometri NH3 terhadap O2 adalah 4 : 5
Mol O2 : Mol NH3 = Koefisien reaksi O2 : Koefisien reaksi NH3
3,125 : Mol NH3= 5 : 4
Mol NH3 = 4/5 x Mol O2 = 4/5 x 3,125 mol = 2,5 mol NH3
Massa NH3 = mol NH3 x Ar NH3 = 2,5 mol NH3 x 17,024 gram NH3/mol NH3 = 42,56 gram NH3
Dengan demikian, jumlah gas amonia yang tersisa (tidak digunakan) adalah sebanyak 100 gram - 42,56 gram = 57,44 gram.
Note:
• 1 mol zat mengandung 6,022 x 10 23 partikel
• Massa satu mol zat dinamakan massa molar (lambang M).Besarnya massa molar zat adalah massa atom relatif atau massa molekul relatif zat yang dinyatakan dalam satuan gram.Massa = M x n
• “ Volume satu mol zat dalam wujud gas dinamakan volume molar (dengan lambang, Vm) zat tersebut”. P . V = n . R . T
Dimana:
P = tekanan (satuan atmosfir, atm)
V = volume (satuan liter, L)
n = jumlah mol gas
R = tetapan gas ( 0,08205 L atm/mol. K )
T = suhu mutlak ( oC + 273,15K )
• Pada keadaan standar (STP): Vm = 22,4 L
V = n x 22,4 L
• “Pada suhu dan tekanan yang sama (TP sama), maka perbandingan
mol gas sama dengan perbandingan volume gas” v=n1/n2 = v1/v2
• Perbandingan massa dan kadar unsur dalam suatu senyawa dapat ditentukan dari
rumus molekulnya. %unsur = (jumlah atom x Ar unsur / Mr ) x100%
• “Rumus empiris, rumus yang menyatakan perbandingan terkecil atomatom
dari unsur-unsur yang menyusun senyawa”
• Rumus Molekul = (Rumus Empiris)n
Mr Rumus Molekul = n x (Mr Rumus Empiris)
n = bilangan bulat
Untuk menentukan rumus empiris dan rumus molekul suatu senyawa, dapat
ditempuh dengan langkah berikut :
1. Cari massa (persentase) tiap unsur penyusun senyawa
2. Ubah ke satuan mol
3. Perbandingan mol tiap unsur merupakan rumus empiris
4. Untuk mencari rumus molekul dengan cara :
( Rumus Empiris ) n = Mr → n dapat dihitung
5.Kemudian kalikan n yang diperoleh dari hitungan, dengan rumus empiris.
• Rumus kimia senyawa kristal padat : x.H2O
• Hidrat : senyawa kristal padat yang mengandung air kristal (H2O)
• Pereaksi pembatas adalah pereaksi yang habis bereaksi lebih dahulu dalam reaksi kimia
Konsep mol menggambarkan keterkaitan antara mol (jumlah partikel dalam
• zat) dengan massa molar atau volume molar.

baca lagi»»
  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Kelas XII Bab 1 Sifat-Sifat Koligatif Larutan

Sifat koligatif larutan adalah sifat larutan yang tidak bergantung pada jenis zat terlarut tetapi hanya bergantung pada konsentrasi pertikel zat terlarutnya[1]. Sifat koligatif larutan terdiri dari dua jenis, yaitu sifat koligatif larutan elektrolit dan sifat koligatif larutan nonelektrolit

Sifat koligatif larutan adalah sifat larutan yang tidak bergantung pada jenis zat terlarut tetapi hanya bergantung pada konsentrasi pertikel zat terlarutnya[1]. Sifat koligatif larutan terdiri dari dua jenis, yaitu sifat koligatif larutan elektrolit dan sifat koligatif larutan nonelektrolit

1. Molalitas dan Fraksi Mol
Dalam larutan, terdapat beberapa sifat zat yang hanya ditentukan oleh banyaknya partikel zat terlarut[2]. Oleh karena sifat koligatif larutan ditentukan oleh banyaknya partikel zat terlarut, maka perlu diketahui tentang konsentrasi larutan[2].

Larutan garam
1. 1. Molalitas (m)
Molalitas (kemolalan) adalah jumlah mol zat terlarut dalam 1 kg (1000 gram) pelarut[2]. Molalitas didefinisikan dengan persamaan berikut
M = massa / Mr x 1000/P

Keterangan :
m = molalitas larutan (mol / kg)
n = jumlah mol zat terlarut (g / mol)
P = massa pelarut (g)

1. 2. Fraksi Mol

Fraksi mol merupakan satuan konsentrasi yang semua komponen larutannya dinyatakan berdasarkan mol. Fraksi mol komponen i, dilambangkan dengan xi adalah jumlah mol komponen I dibagi dengan jumlah mol semua komponen dalam larutan. Fraksi mol jadalah xj dan seterusnya. Jumlah fraksi mol dari semua komponen adalah 1. Persamaannya dapat ditulis. Molalitas didefinisikan dengan persamaan berikut:
Xi = ni/ ni+nj

2. Sifat Koligatif Larutan Nonelektrolit
Meskipun sifat koligatif melibatkan larutan, sifat koligatif tidak bergantung pada interaksi antara molekul pelarut dan zat terlarut, tetapi bergatung pada jumlah zat terlarut yang larut pada suatu larutan[3]. Sifat koligatif terdiri dari penurunan tekanan uap, kenaikan titik didih, penurunan titik beku, dan tekanan osmotik[3].
2. 1. Penurunan Tekanan Uap


Marie Francois Raoult (1830 - 1901) ilmuwan yang menyimpulkan tentang tekanan uap jenuh larutan
Molekul - molekul zat cair yang meninggalkan permukaan menyebabkan adanya tekanan uap zat cair[3]. Semakin mudah molekul - molekul zat cair berubah menjadi uap, makin tinggi pula tekanan uapzat cair[3]. Apabila tekanan zat cair tersebut dilarutkan oleh zat terlarut yang tidak menguap, maka partikel - partikel zat terlarut ini akan mengurangi penguapan molekul - molekul zat cair[3]. Laut mati adalah contoh dari terjadinya penurunan tekanan uap pelarut oleh zat terlarut yang tidak mudah menguap. Air berkadar garam sangat tinggi ini terletak di daerah gurun yang sangat panas dan kering, serta tidak berhubungan dengan laut bebas, sehingga konsentrasi zat terlarutnya semakin tinggi[3]. Persamaan penurunan tekanan uap dapat ditulis[3] :
Delta P = P0 - P
P0 > P
• Keterangan :
P0 = tekanan uap zat cair murni
P = tekanan uap larutan
Pada tahun 1808, Marie Francois Raoult seorang kimiawan asal Perancis melakukan percobaan mengenai tekanan uap jenuh larutan, sehingga ia menyimpulkan tekanan uap jenuh larutan sama dengan fraksi mol pelarut dikalikan dengan tekanan uap jenuh pelarut murni[3]. Persamaan penurunan tekanan uap dapat ditulis[3]. Kesimpulan ini dikenal dengan Hukum Raoult dan dirumuskan dengan[3]. Persamaan penurunan tekanan uap dapat ditulis :
P = P0 x Xp
Delta P = P0 x Xt
Keterangan :
P = tekanan uap jenuh larutan
P0 = tekanan uap jenuh pelarut murni
Xp = fraksi mol zat pelarut
Xt = fraksi mol zat terlarut

Van't Hoff
Tekanan osmotik adalah gaya yang diperlukan untuk mengimbangi desakan zat pelarut yang melalui selaput semipermiabel ke dalam larutan. Membran semipermeabel adalah suatu selaput yang dapat dilalui molekul - molekul pelarut dan tidak dapat dilalui oleh zat terlarut. Menurut Van't Hoff, tekanan osmotik larutan dirumuskan :
Π = M x R x T

• Keterangan :
Π = tekanan osmotik
M = molaritas larutan
R = tetapan gas ( 0,082 )
T = suhu mutlak
3. Sifat Koligatif Larutan Elektrolit
Pada konsentrasi yang sama, sifat koligatif larutan elektrolit memliki nilai yang lebih besar daripada sifat koligatif larutan non elektrolit. Banyaknya partikel zat terlarut hasil reaksi ionisasi larutan elektrolit dirumuskan dalam faktor Van't Hoff. Perhitungan sifat koligatif larutan elektrolit selalu dikalikan dengan faktor Van't Hoff :
i = 1 + (n-1) α
Keterangan :
I = faktor Van't Hoff
n = jumlah koefisien kation
α = derajat ionisasi

Gambaran umum sifat koligatif
Sifat koligatif larutan adalah sifat larutan yang tidak tergantung pada macamnya zat terlarut tetapi semata-mata hanya ditentukan oleh banyaknya zat terlarut (konsentrasi zat terlarut).
Apabila suatu pelarut ditambah dengan sedikit zat terlarut (Gambar 6.2), maka akan didapat suatu larutan yang mengalami:
1. Penurunan tekanan uap jenuh
2. Kenaikan titik didih
3. Penurunan titik beku
4. Tekanan osmosis
Banyaknya partikel dalam larutan ditentukan oleh konsentrasi larutan dan sifat Larutan itu sendiri. Jumlah partikel dalam larutan non elektrolit tidak sama dengan jumlah partikel dalam larutan elektrolit, walaupun konsentrasi keduanya sama. Hal ini dikarenakan larutan elektrolit terurai menjadi ion-ionnya, sedangkan larutan non elektrolit tidak terurai menjadi ion-ion. Dengan demikian sifat koligatif larutan dibedakan atas sifat koligatif larutan non elektrolit dan sifat koligatif larutan elektrolit.

Penurunan Tekanan Uap Jenuh
Pada setiap suhu, zat cair selalu mempunyai tekanan tertentu. Tekanan ini adalah tekanan uap jenuhnya pada suhu tertentu. Penambahan suatu zat ke dalam zat cair menyebabkan penurunan tekanan uapnya. Hal ini disebabkan karena zat terlarut itu mengurangi bagian atau fraksi dari pelarut, sehingga kecepatan penguapan berkurang.


Sumber:
http://wapedia.mobi/id/Koligatif
http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_x/sifat-koligatif-larutan/

baca lagi»»
  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Kelas X Bab 3 Tata Nama Senyawa Kimia

Tata Nama Senyawa Sederhana
1). Tata Nama Senyawa Molekul ( Kovalen ) Biner.
Senyawa biner adalah senyawa yang hanya terdiri dari dua jenis unsur.
Contoh : air (H 2 O), amonia (NH 3 )
a). Rumus Senyawa
Unsur yang terdapat lebih dahulu dalam urutan berikut, ditulis di depan.
B-Si-C-Sb-As-P-N-H-Te-Se-S-I -Br-Cl-O-F
b). Nama Senyawa
Nama senyawa biner dari dua jenis unsur non logam adalah rangkaian nama kedua jenis unsur tersebut dengan akhiran –ida (ditambahkan pada unsur yang kedua).
Catatan :
Jika pasangan unsur yang bersenyawa membentuk lebih dari sejenis senyawa, maka senyawa-senyawa yang terbentuk dibedakan dengan menyebutkan angka indeks dalam bahasa Yunani.
1 = mono 2 = di 3 = tri 4 = tetra
5 = penta 6 = heksa 7 = hepta 8 = okta
9 = nona 10 = deka
Angka indeks satu tidak perlu disebutkan, kecuali untuk nama senyawa karbon monoksida.
c). Senyawa yang sudah umum dikenal, tidak perlu mengikuti aturan di atas.

2). Tata Nama Senyawa Ion.
Kation = ion bermuatan positif (ion logam)
Anion = ion bermuatan negatif (ion non logam atau ion poliatom)
a). Rumus Senyawa
Unsur logam ditulis di depan.
Rumus senyawa ion ditentukan oleh perbandingan muatan kation dan anionnya.
Kation dan anion diberi indeks sedemikian rupa sehingga senyawa bersifat netral ( jumlahmuatan positif = jumlah muatan negatif).
b). Nama Senyawa
Nama senyawa ion adalah rangkaian nama kation (di depan) dan nama anionnya (di belakang); sedangkan angka indeks tidak disebutkan.
Catatan :
Ø Jika unsur logam mempunyai lebih dari sejenis bilangan oksidasi, maka senyawa-senyawanya dibedakan dengan menuliskan bilangan oksidasinya (ditulis dalam tanda kurung dengan angka Romawi di belakang nama unsur logam itu).
Ø Berdasarkan cara lama, senyawa dari unsur logam yang mempunyai 2 jenis muatan dibedakan dengan memberi akhiran –o untuk muatan yang lebih rendah dan akhiran – iuntuk muatan yang lebih tinggi.
Cara ini kurang informatif karena tidak menyatakan bilangan oksidasi unsur logam yang bersangkutan.

3). Tata Nama Senyawa Terner.
Senyawa terner sederhana meliputi : asam, basa dan garam.
Reaksi antara asam dengan basa menghasilkan garam.
a). Tata Nama Asam.
Asam adalah senyawa hidrogen yang di dalam air mempunyai rasa masam.
Rumus asam terdiri atas atom H (di depan, dianggap sebagai ion H + ) dan suatu anion yang disebut sisa asam .
Catatan : perlu diingat bahwa asam adalah senyawa molekul, bukan senyawa ion.
Nama anion sisa asam = nama asam yang bersangkutan tanpa kata asam.
Contoh : H 3 PO 4
Nama asam = asam fosfat
Rumus sisa asam = PO 4 3- (fosfat)
b). Tata Nama Basa.
Basa adalah zat yang jika di dalam air dapat menghasilkan ion OH-
Pada umumnya, basa adalah senyawa ion yang terdiri dari kation logam dan anion
Nama basa = nama kationnya yang diikuti kata hidroksida .
c). Tata Nama Garam.
Garam adalah senyawa ion yang terdiri dari kation basa dan anion sisa asam .
Rumus dan penamaannya = senyawa ion.
4). Tata Nama Senyawa Organik.

Persamaan reaksi
Menggambarkan reaksi kimia yang terdiri atas rumus kimia pereaksi dan hasil reaksi disertai dengan koefisiennya masing-masing.
1). Menuliskan Persamaan Reaksi.
o Reaksi kimia mengubah zat-zat asal (pereaksi = reaktan ) menjadi zat baru (produk).
o Jenis dan jumlah atom yang terlibat dalam reaksi tidak berubah, tetapi ikatan kimia di antaranya berubah.
o Ikatan kimia dalam pereaksi diputuskan dan terbentuk ikatan baru dalam produknya.
o Atom-atom ditata ulang membentuk produk reaksi.

Penulisan persamaan reaksi dapat dilakukan dengan 2 langkah :
1). Menuliskan rumus kimia zat pereaksi dan produk, lengkap dengan keterangan wujudnya.
2). Penyetaraan, yaitu memberi koefisien yang sesuai sehingga jumlah atom setiap unsur sama pada kedua ruas ( cara sederhana ).

2). Menyetarakan Persamaan Reaksi.
Langkah-langkahnya ( cara matematis ) :
a). Tetapkan koefisien salah satu zat, biasanya zat yang rumusnya paling kompleks = 1, sedangkan zat lain diberikan koefisien sementara dengan huruf.
b). Setarakan terlebih dahulu unsur yang terkait langsung dengan zat yang diberi koefisien 1 itu.
c). Setarakan unsur lainnya. Biasanya akan membantu jika atom O disetarakan paling akhir.

baca lagi»»
  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Kelas XII Bab 6 Makromolekul

Makromolekul
Makromolekul adalah molekul yang sangat besar. Polimer baik itu alami maupun sintetik merupakan makromolekul, misalnya hemoglobin. Beberapa senyawa non-polimer juga ada yang termasuk ke dalam makromolekul, misalnya lipid. Bagaimanapun juga, sistem jaringan atom besar lainnya seperti ikatan kovalen logam tidak dapat dikatakan sebagai makromolekul. Istilah makromolekul ini pertama kali diperkenalkan oleh pemenang hadiah nobel Hermann Staudinger sekitar tahun 1920an.



Makromolekul sebagai Penyusun Sel

Biologi sel – beragam struktur dan fungsi sel – pada kenyataannya tidak bisa dilepaskan dari molekul dan reaksi-reaksi kimia. Proses-proses kimia yang terjadi di dalam sel ataupun organisme juga tidak bisa dilepaskan dari hukum-hukum universal fisika. Jadi, pada hakikatnya biologi sel mempelajari reaksi-reaksi kimia yang terjadi dalam suatu sistem (yang memunculkan) kehidupan. Ada dua topik utama, yaitu nilai-nilai penting bahan kimia penyusun organisme dan makromolekul.

Bahan kimia penyusun kehidupan mempunyai lima nilai penting, yaitu:
1. Rantai Karbon
2. Air
3. Permeabilitas Selektif Membran
4. Polimerasi Molekul-Molekul Kecil
5. Self-Assembly


Nilai Penting Rantai Karbon

Unsur kimia yang yang paling mendominasi kehidupan adalah karbon. Tanpa kecuali, semua molekul kimia penting kehidupan selalu mengandung unsur karbon. Awalnya, studi tentang molekul yang mengandung karbon ini merupakan domain dari ilmu kimia organik. Sesuai namanya, kimia organik bekerja pada bahan kimia yang ada pada sistem kehidupan (organic = sesuatu yang berasal dari mahluk hidup, organisme).

Dalam perkembangannya, berbagai bahan kimia organik bisa disintesis di lab dan tidak tergantung pada mahluk hidup lagi. Selain itu, beragam senyawa organik baru yang tidak pernah ditemukan pada mahluk hidup berhasil disintesis. Sejak itu, muncul cabang ilmu baru, yaitu biological chemistry yang disingkat menjadi biokimia. Dalam hal ini, biokimia mempelajari beragam senyawa kimia, baik yang alami maupun yang berhasil disintesis di lab, yang bisa ditemukan pada mahluk hidup. Sedangkan yang tidak ditemukan dalam mahluk hidup tetap menjadi domain kimia organik.

Unsur utama penyusun molekul biologi adalah karbon. Ragam dan stabilitas molekul yang mengandung unsur karbon disebabkan oleh karakteristiknya yang spesifik, terutama ketika membentuk ikatan dengan unsur-unsur lain. Salah satu sifat yang paling mendasar dari unsur karbon adalah pada orbital elektron terluarnya kekurangan 4 elektron dari seharusnya 8 elektron. Karena orbital elektron terluar merupakan pertanda stabil-tidaknya suatu unsur, maka agar stabil, karbon cenderung berasosiasi dengan 4 unsur lainnya yang juga kekurangan elektron. Dengan kata lain, unsur karbon mempunyai valensi 4. Penggunaan bersama elektron oleh dua unsur atau lebih akan membentuk ikatan yang dikenal dengan ikatan kovalen. Selain itu, semakin kecil BM unsur yang diikat oleh karbon maka ikatan kovalen yang terbentuk stabil. Dengan begitu, untuk satu unsur karbon membutuhkan empat unsur yang lain agar elektron dalam orbit terluarnya menjadi stabil.

Pada umumnya, karbon akan membentuk ikatan kovalen dengan 1 karbon yang lain dan dengan oksigen, hidrogen, nitrogen dan sulfur. Metana (satu karbon berikatan dengan 4 hidrogen), etanol (CH3 – CH2OH) dan metilamina(CH3 – NH2) merupakan senyawa karbon sederhana yang mengandung ikatan tunggal. Selain itu, kadangkala dua atau tiga elektron digunakan bersama oleh dua unsur sehingga membentuk ikatan rangkap dua atau ikatan rangkap tiga. Jadi, kombinasi valensi dan BM kecil merupakan karakteristik molekul berunsur karbon menjadi sangat beragam dan stabil yang mendominasi molekul biologis.

Molekul berunsur karbon adalah molekul yang stabil
Kestabilan molekul berunsur karbon bisa dilihat dari energi ikatan, yaitu jumlah energi yang dibutuhkan untuk memutus 1 mol (sekitar 6 x 1023) ikatan. Seringkali, energi ikatan disalahartikan sebagai energi yang tersimpan dalam ikatan. Energi ikatan ini diekspresikan sebagai kalori per mol (kal/mol). Kalori adalah jumlah energi yang dibutuhkan untuk menaikkan suhu air sebesar 1o C.
Untuk memutus ikatan karbon dan karbon (C – C) dibutuhkan 83 kkal/mol, Energi ikatan karbon dan hidrogen (C – H) = 99 kkal/mol, karbon dan oksigen (C – O) = 84 kkal/mol dan karbon-nitrogen (C – N) = 70 kkal/mol. Energi yang jauh lebih besar dibutuhkan untuk memutus ikatan karbon rangkap dua (C ═ C), yaitu 146 kkal/mol dan ikatan karbon rangkap tiga (C ≡ C), yaitu 212 kkal/mol.

Besarnya energi ikatan molekul berunsur karbon diatas bisa lebih mudah diapresiasi kalau dibandingkan dengan nilai-nilai energi yang sejenis. Misalnya, energi ikatan non-kovalen hanya beberapa kkal/mol, energi gelombang panas sekitar 0.6 kkal/mol, ikatan gugus fosfat dalam molekul ATP = 7.3 kkal/mol.

Jadi bisa dipahami bahwa molekul yang paling penting bagi kehidupan di muka bumi ini adalah yang berbasis rantai karbon. Hal ini karena energi panjang gelombang matahari yang masuk ke permukaan bumi tidak bisa memutus ikatan C – C. Hubungan energi dan panjang gelombang bisa dinotasikan sebagai E = 28.600/lkkal/einstein.

Menggunakan notasi tersebut, maka panjang gelombang cahaya matahari yang masuk ke permukaan bumi berada dalam kisaran cahaya tampak, yaitu antara 400-700 nm, mempunyai energi antara 71.5 – 40.8 kkal/einstein. Nilai energi matahari tersebut jauh dibawah energi ikatan C – C. Dari notasi diatas bisa dimengerti bahwa sinar ultraviolet dengan panjang gelombang <400>
problem: mungkinkah kalaupun ada kehidupan di luar bumi akan tersusun oleh molekul berunsur karbon?

Molekul berunsur karbon adalah molekul yang sangat beragam
Valensi 4 dari unsur karbon memungkinkan satu karbon mengikat 4 unsur yang lain, terutama yang berBM rendah yang hanya ada beberapa saja, dan yang paling banyak ditemukan dalam mahluk hidup adalah H. O, N, S dan P. Hal ini menyebabkan molekul berunsur karbon menjadi sangat beragam. Ditambah lagi jika satu valensi karbon membentuk ikatan dengan karbon yang lain.

Jika rantai karbon hanya berikatan dengan hidrogen maka akan membentuk hidrokarbon dengan struktur linear maupun sirkular. Hidrokarbon adalah molekul penting secara ekonomis sebagai bahan bakar minyak, misalnya bensin (octane, C8H18). Molekul ini tidak larut air sehingga di dalam sel fungsi utamanya adalah sebagai penyusun membran sel bagian dalam.
Selain dengan hidrogen dan unsur-unsur tunggal lainnya, rantai karbon berikatan dengan beragam gugus fungsional yang kemudian sangat menentukan kelarutannya dalam air dan reaktifitasnya. Beberapa gugus fungsional yang biasa ditemukan dalam mahluk hidup antara lain yang bermuatan negatif (karboksil dan fosforil), bermuatan positif (amino), dan berpH netral (hidroksil, sulfhidril, karbonil, aldehida).

Molekul berunsur karbon dapat membentuk stereoisomer
Selain kemampuannya berikatan dengan gugus fungsional, keragaman molekul berunsur karbon ditambah lagi dengan kemampuan strukturnya membentuk simetri geometris. Hal ini karena distribusi elektron yang digunakan bersama berada dalam konfigurasi tetrahedral. Jika ada dua molekul karbon dengan struktur bayangan cermin yang satu dengan yang lain maka keduanya disebut stereoisomer. Meskipun begitu, kedua molekul yang saling stereoisomer tidak selalu bisa ditemukan ada dalam mahluk hidup. Misalnya, yang bisa ditemukan ada pada mahluk hidup adalah D-glukosa, sedangkan L-alanin maupun D-alanin keduanya ditemukan sebagai penyusun protein yang ada pada mahluk hidup.
Sifat-sifat Air
1. Molekul Polar
2. Kohesif
3. Mempunyai kapasistas peredam suhu tinggi
4. Pelarut

Permeabilitas Selektif Membran
1. Membran adalah lipid bilayer yang dilengkapi dengan protein integral
2. Membran bersifat permeabel selektif
Sintesis dengan Polimerasi
1. Makromolekul bertanggungjawab dalam struktur dan fungsi sistem kehidupan
2. Ada tiga makromolekul yang menyusun sel
a. karbohidrat
b. protein
c. asam nukleat
3. Sintesis makromolekul dengan polimerasi, tahap-demi-tahap
a. Makromolekul selalu disintesis tahap demi tahap polimerasi dari molekul-molekul kecil yang disebut monomer
b. Pembentukan polimer atau penambahan unit-unit monomer ke polimer terjadi melalui reaksi kondensasi – pembentukan molekul air
c. Sebelum kondensasi terjadi, setiap monomer diaktifkan terlebih dahulu
d. Molekul yang membantu aktifasi monomer adalah ATP

4. Kemampuan self-assembly

1. Sebagian besar protein mempunyai kemampuan self-assembly
2. Chaperone adalah molekul yang terlibat dalam pembentukan struktur protein
3. Interaksi non-kovalen terlibat dalam pembentukan struktur makromolekul
4. Keterbatasan self-assembly
5. Hirarki assembly memberikan keuntungan tersendiri bagi sel

Makromolekul dan Lipid
1. Protein
a. Asam amino sebagai monomer protein
b. Klasifikasi struktur primer, sekunder, tertier dan kuartener

2. Asam nukleat
a. Jenis-jenis nukleotida
b. Polimer: DNA dan RNA
c. Struktur double heliks

3. Polisakarida
a. Jenis-jenis monosakarida
b. Ikatan glikosida
c. Fungsi penyimpan energi dan struktur

4. Lipid
a. Asam lemak sebagai penyusun lipid
b. Triacilgliserol sebagai lipid penyimpan
c. Fosfolipid sebagai penyusun struktur membran sel
d. Glikolipid sebagai komponen-komponen khusus membran sel
e. Steroid merupakan lipid dengan beragam fungsi
f. Terpena dibentuk dari isoprena

baca lagi»»
  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS